squash merge from dev branch

This commit is contained in:
Steve Brunton
2017-09-04 22:52:14 -04:00
parent 123cd935a3
commit ed916703c6
1058 changed files with 311598 additions and 3 deletions

86
vendor/golang.org/x/crypto/nacl/box/box.go generated vendored Normal file
View File

@@ -0,0 +1,86 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
/*
Package box authenticates and encrypts messages using public-key cryptography.
Box uses Curve25519, XSalsa20 and Poly1305 to encrypt and authenticate
messages. The length of messages is not hidden.
It is the caller's responsibility to ensure the uniqueness of nonces—for
example, by using nonce 1 for the first message, nonce 2 for the second
message, etc. Nonces are long enough that randomly generated nonces have
negligible risk of collision.
This package is interoperable with NaCl: https://nacl.cr.yp.to/box.html.
*/
package box // import "golang.org/x/crypto/nacl/box"
import (
"io"
"golang.org/x/crypto/curve25519"
"golang.org/x/crypto/nacl/secretbox"
"golang.org/x/crypto/salsa20/salsa"
)
// Overhead is the number of bytes of overhead when boxing a message.
const Overhead = secretbox.Overhead
// GenerateKey generates a new public/private key pair suitable for use with
// Seal and Open.
func GenerateKey(rand io.Reader) (publicKey, privateKey *[32]byte, err error) {
publicKey = new([32]byte)
privateKey = new([32]byte)
_, err = io.ReadFull(rand, privateKey[:])
if err != nil {
publicKey = nil
privateKey = nil
return
}
curve25519.ScalarBaseMult(publicKey, privateKey)
return
}
var zeros [16]byte
// Precompute calculates the shared key between peersPublicKey and privateKey
// and writes it to sharedKey. The shared key can be used with
// OpenAfterPrecomputation and SealAfterPrecomputation to speed up processing
// when using the same pair of keys repeatedly.
func Precompute(sharedKey, peersPublicKey, privateKey *[32]byte) {
curve25519.ScalarMult(sharedKey, privateKey, peersPublicKey)
salsa.HSalsa20(sharedKey, &zeros, sharedKey, &salsa.Sigma)
}
// Seal appends an encrypted and authenticated copy of message to out, which
// will be Overhead bytes longer than the original and must not overlap. The
// nonce must be unique for each distinct message for a given pair of keys.
func Seal(out, message []byte, nonce *[24]byte, peersPublicKey, privateKey *[32]byte) []byte {
var sharedKey [32]byte
Precompute(&sharedKey, peersPublicKey, privateKey)
return secretbox.Seal(out, message, nonce, &sharedKey)
}
// SealAfterPrecomputation performs the same actions as Seal, but takes a
// shared key as generated by Precompute.
func SealAfterPrecomputation(out, message []byte, nonce *[24]byte, sharedKey *[32]byte) []byte {
return secretbox.Seal(out, message, nonce, sharedKey)
}
// Open authenticates and decrypts a box produced by Seal and appends the
// message to out, which must not overlap box. The output will be Overhead
// bytes smaller than box.
func Open(out, box []byte, nonce *[24]byte, peersPublicKey, privateKey *[32]byte) ([]byte, bool) {
var sharedKey [32]byte
Precompute(&sharedKey, peersPublicKey, privateKey)
return secretbox.Open(out, box, nonce, &sharedKey)
}
// OpenAfterPrecomputation performs the same actions as Open, but takes a
// shared key as generated by Precompute.
func OpenAfterPrecomputation(out, box []byte, nonce *[24]byte, sharedKey *[32]byte) ([]byte, bool) {
return secretbox.Open(out, box, nonce, sharedKey)
}

78
vendor/golang.org/x/crypto/nacl/box/box_test.go generated vendored Normal file
View File

@@ -0,0 +1,78 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package box
import (
"bytes"
"crypto/rand"
"encoding/hex"
"testing"
"golang.org/x/crypto/curve25519"
)
func TestSealOpen(t *testing.T) {
publicKey1, privateKey1, _ := GenerateKey(rand.Reader)
publicKey2, privateKey2, _ := GenerateKey(rand.Reader)
if *privateKey1 == *privateKey2 {
t.Fatalf("private keys are equal!")
}
if *publicKey1 == *publicKey2 {
t.Fatalf("public keys are equal!")
}
message := []byte("test message")
var nonce [24]byte
box := Seal(nil, message, &nonce, publicKey1, privateKey2)
opened, ok := Open(nil, box, &nonce, publicKey2, privateKey1)
if !ok {
t.Fatalf("failed to open box")
}
if !bytes.Equal(opened, message) {
t.Fatalf("got %x, want %x", opened, message)
}
for i := range box {
box[i] ^= 0x40
_, ok := Open(nil, box, &nonce, publicKey2, privateKey1)
if ok {
t.Fatalf("opened box with byte %d corrupted", i)
}
box[i] ^= 0x40
}
}
func TestBox(t *testing.T) {
var privateKey1, privateKey2 [32]byte
for i := range privateKey1[:] {
privateKey1[i] = 1
}
for i := range privateKey2[:] {
privateKey2[i] = 2
}
var publicKey1 [32]byte
curve25519.ScalarBaseMult(&publicKey1, &privateKey1)
var message [64]byte
for i := range message[:] {
message[i] = 3
}
var nonce [24]byte
for i := range nonce[:] {
nonce[i] = 4
}
box := Seal(nil, message[:], &nonce, &publicKey1, &privateKey2)
// expected was generated using the C implementation of NaCl.
expected, _ := hex.DecodeString("78ea30b19d2341ebbdba54180f821eec265cf86312549bea8a37652a8bb94f07b78a73ed1708085e6ddd0e943bbdeb8755079a37eb31d86163ce241164a47629c0539f330b4914cd135b3855bc2a2dfc")
if !bytes.Equal(box, expected) {
t.Fatalf("box didn't match, got\n%x\n, expected\n%x", box, expected)
}
}

95
vendor/golang.org/x/crypto/nacl/box/example_test.go generated vendored Normal file
View File

@@ -0,0 +1,95 @@
package box_test
import (
crypto_rand "crypto/rand" // Custom so it's clear which rand we're using.
"fmt"
"io"
"golang.org/x/crypto/nacl/box"
)
func Example() {
senderPublicKey, senderPrivateKey, err := box.GenerateKey(crypto_rand.Reader)
if err != nil {
panic(err)
}
recipientPublicKey, recipientPrivateKey, err := box.GenerateKey(crypto_rand.Reader)
if err != nil {
panic(err)
}
// You must use a different nonce for each message you encrypt with the
// same key. Since the nonce here is 192 bits long, a random value
// provides a sufficiently small probability of repeats.
var nonce [24]byte
if _, err := io.ReadFull(crypto_rand.Reader, nonce[:]); err != nil {
panic(err)
}
msg := []byte("Alas, poor Yorick! I knew him, Horatio")
// This encrypts msg and appends the result to the nonce.
encrypted := box.Seal(nonce[:], msg, &nonce, recipientPublicKey, senderPrivateKey)
// The recipient can decrypt the message using their private key and the
// sender's public key. When you decrypt, you must use the same nonce you
// used to encrypt the message. One way to achieve this is to store the
// nonce alongside the encrypted message. Above, we stored the nonce in the
// first 24 bytes of the encrypted text.
var decryptNonce [24]byte
copy(decryptNonce[:], encrypted[:24])
decrypted, ok := box.Open(nil, encrypted[24:], &decryptNonce, senderPublicKey, recipientPrivateKey)
if !ok {
panic("decryption error")
}
fmt.Println(string(decrypted))
// Output: Alas, poor Yorick! I knew him, Horatio
}
func Example_precompute() {
senderPublicKey, senderPrivateKey, err := box.GenerateKey(crypto_rand.Reader)
if err != nil {
panic(err)
}
recipientPublicKey, recipientPrivateKey, err := box.GenerateKey(crypto_rand.Reader)
if err != nil {
panic(err)
}
// The shared key can be used to speed up processing when using the same
// pair of keys repeatedly.
sharedEncryptKey := new([32]byte)
box.Precompute(sharedEncryptKey, recipientPublicKey, senderPrivateKey)
// You must use a different nonce for each message you encrypt with the
// same key. Since the nonce here is 192 bits long, a random value
// provides a sufficiently small probability of repeats.
var nonce [24]byte
if _, err := io.ReadFull(crypto_rand.Reader, nonce[:]); err != nil {
panic(err)
}
msg := []byte("A fellow of infinite jest, of most excellent fancy")
// This encrypts msg and appends the result to the nonce.
encrypted := box.SealAfterPrecomputation(nonce[:], msg, &nonce, sharedEncryptKey)
// The shared key can be used to speed up processing when using the same
// pair of keys repeatedly.
var sharedDecryptKey [32]byte
box.Precompute(&sharedDecryptKey, senderPublicKey, recipientPrivateKey)
// The recipient can decrypt the message using the shared key. When you
// decrypt, you must use the same nonce you used to encrypt the message.
// One way to achieve this is to store the nonce alongside the encrypted
// message. Above, we stored the nonce in the first 24 bytes of the
// encrypted text.
var decryptNonce [24]byte
copy(decryptNonce[:], encrypted[:24])
decrypted, ok := box.OpenAfterPrecomputation(nil, encrypted[24:], &decryptNonce, &sharedDecryptKey)
if !ok {
panic("decryption error")
}
fmt.Println(string(decrypted))
// Output: A fellow of infinite jest, of most excellent fancy
}